γ-Jet Acceptance and Efficiency

Joe Osborn University of Michigan

Last Time

- Last presentation: <u>January 17, 2017</u>
- Showed first study of γ-jet observables, detector response
- Based on cross section from PYTHIA, expect ~800k QCD Compton scattering events
- Today:
 - Studies of acceptance and efficiency; how many will we really measure?
 - How small can we reliably resolve jets in p_T ?

PYTHIA Requirements

- Using PYTHIA8 simulation, with all Prompt Photon processes on
- Require p_T (PhaseSpace:pTHatMin = 10.0) of hard scatter to be greater than 10 GeV
- No other phase space cuts
- Efficiencies are defined as N_{reco}/N_{truth}
- Require reconstruction p_T^γ>10 and collect R=0.4 jets

Truth Distributions

 Truth distributions look as expected

Reconstruction Efficiencies

- p_T efficiency starts small and approaches 1, albeit within large uncertainties at higher p_T
- Seems unreasonably large?

Reconstruction Efficiencies

 Efficiencies as a function of φ and η seem to make more sense, although still large

Are these effects
from the detector?
Clustering
algorithm?

Jet pt Response

- Reminder this is only R=0.4 jets
- Would ideally like to measure to as small jet p_T as possible while still maintining good p_T, φ resolution
- Seems ~8 GeV is the limit to returning to the nominal(ish) jet p_T response

Jet & Response

- φ response follows similar behavior as p_T response
- Smaller p_T jets have ~2x worse resolution than previous study with >20 GeV jets
- Would like to study this as a function of cone size R

Conclusions

- Acceptance and efficiency seems unreasonably large at high p_T
- Acceptance and efficiency seem more reasonable as a function of η,φ, but still rather large. Perhaps it is due to the kinematic phase space I'm looking in?
- Jet p_T and ϕ response degrade considerably with jet p_T . Looks like the lowest reasonable hard scale we can look at is ~10-12 GeV or so.
- To-Do
 - Understand acceptance and efficiency
 - Run for different jet cone sizes R
 - Continue studying jet φ resolution offset as a function of jet characteristics

Back Up

Reconstructed φ, η Distributions

Photon pt Response

Jet Response with high(er) p_T Jets

